

28-29-30 NOV 2019 FERRARA [ITALIA]

Diffusione in Italia

Agricoltura giugno 2013, anno 41 n. 6

Mensile della Regione Emilia-Romagna

Malattie delle piante

Trovata una cimice esotica dannosa per i frutteti

Halyomorpha halys, rinvenuta nei dintorni di Modena, è di origine asiatica. Da maggio è stato attivato un monitoraggio per approfondire l'incidenza economica del fitofago.

un continente all'altro, valicando teroptera: Pentatomidae).

ull'onda del crescente da uno degli autori del ritrova- centrale, che si nutre su un'amcommercio internazionale mento - Paride Dioli, specialista pia varietà di piante coltivate e sono sempre più numerosi nella tassonomia degli Eterotteri spontanee (oltre 300 specie), con gli organismi potenzial- - come appartenenti alla specie una predilezione per Rosacee e mente dannosi che si spostano da Halyomorpha halys Stål 1855 (He-Fabacce, In autunno gli adulti si aggregano per svernare, cercando

e deall Allmenti.

PARIDE DIOLI di Storia Naturale Morbeano (SO)

MASSIMO BARISELLI Servizio Fitosanitario

DIFESA DELLE COLTURE

ARTICOLO PUBBLICATO SU L'INFORMATORE AGRARIO N. 37/2013 A PAG. 60

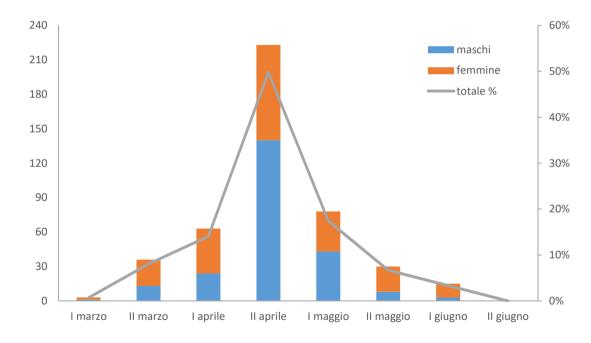
di M.G. Pansa, L. Asteggiano, C. Costamagna, G. Vittone, L. Tavella

Piante ospiti e danni

> altamente polifago su specie coltivate e spontanee (fruttiferi, orticole, seminativi, ornamentali, forestali...)

danno causato dalle punture di nutrizione di stadi giovanili e adulti

Dati biologici


DISAFA

√ sopravvivenza e risposta a feromoni adulti svernanti

anno	n. casse	n. cimici	sopravvivenza	fuoriuscita
2016	3	900	33% (33-53%)	marzo-giugno
2017	6	3300	21% (2-72%)	febbraio-giugno
2018	6	2545	18% (2-65%)	#

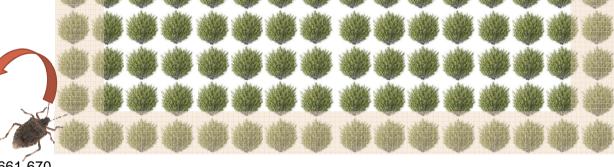
✓ catture nelle trappole da 2ª decade di aprile

Dati biologici

✓ prime piante ospiti

in aprile-maggio, adulti rinvenuti in maggior parte entro 5 m dall'erogatore (area di arresto), indipendentemente da pianta ospite

Comportamento e difesa



IPM-Crop Perimeter Restructuring

Comportamento e difesa

DIFESA DELLE COLTURE

> nel caso dei frutteti applicazione di reti antinsetto sul modello Alt'Carpo

Comportamento e difesa

- > Sotto rete
- > Fuori rete

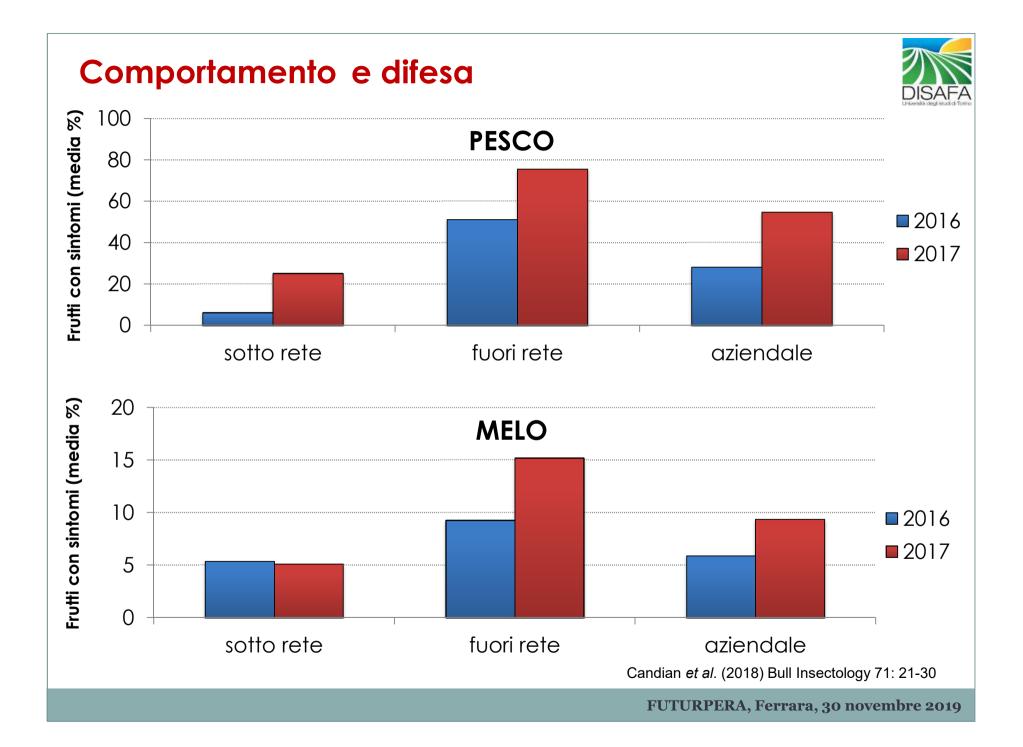
nessun trattamento insetticida da chiusura reti alla raccolta

> Aziendale: fuori rete con trattamenti insetticidi come da gestione aziendale

trattamenti insetticidi applicati in più

- √ nei pescheti: 2 nel 2016; 7 nel 2017
- √ nei meleti:4-3 nel 2016; 7-6 nel 2017

rete foto-selettiva PERLA (maglia 2,4 × 4,8 mm)


3 set da 16-20 piante per frutteto

"Low pesticide IPM in sustainable and safe fruit production"

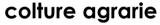
Candian *et al.* (2018) Bull Insectology 71: 21-30 Candian *et al.* (2019) Pest Management Sci (in stampa)

Difesa

- reti escludi-insetto
- lotta chimica (solo prodotti abbattenti)
 - poche molecole efficaci, fra cui insetticidi ad ampio spettro d'azione
 - differente sensibilità delle generazioni alla stessa molecola
 - ricolonizzazione della coltura da parte di nuovi individui
 - difficoltà nel rispetto degli intervalli di sicurezza e dei residui sul prodotto finale
 - soglia di intervento?
 - •
- IPM-Crop Perimeter Restructuring
- attract-&-kill, push-&-pull
- lotta biologica (predatori, parassitoidi)
- **>** ...

j.

Osservatorio cimice asiatica



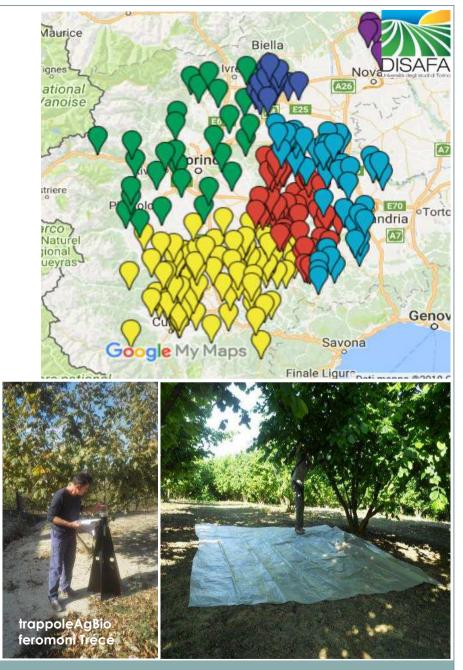
- ✓ elevate infestazioni di cimice asiatica con pesanti perdite di produzione, in particolare su nocciolo
- √ necessità di numerosi trattamenti insetticidi, con conseguenze sulle strategie di difesa integrata

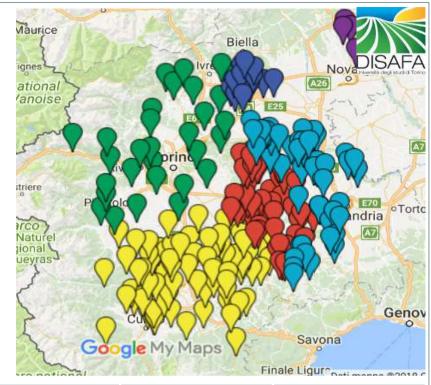
sigenza di costituire un fronte comune contro questa grave emergenza per le

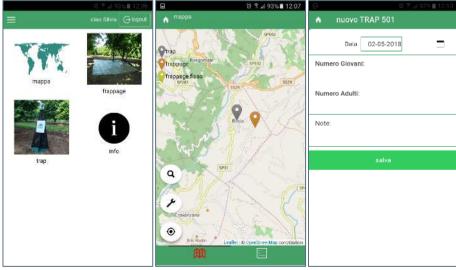
DISAFA

Osservatorio cimice asiatica principali obiettivi:

- √ limitare i danni causati dall'insetto nella stagione 2018 (breve periodo)
 - ⇒ monitoraggio in tempo reale della diffusione, emissione di bollettini alle organizzazioni tecniche e di produttori per l'esecuzione dei trattamenti volti a ottimizzarne efficacia ed efficienza
- Individuore e mettere in atto soluzione efficaci e durature (lungo periodo)
 - > risposta di feromoni, utilizzo di antagonisti naturali e/o sostanze battericide

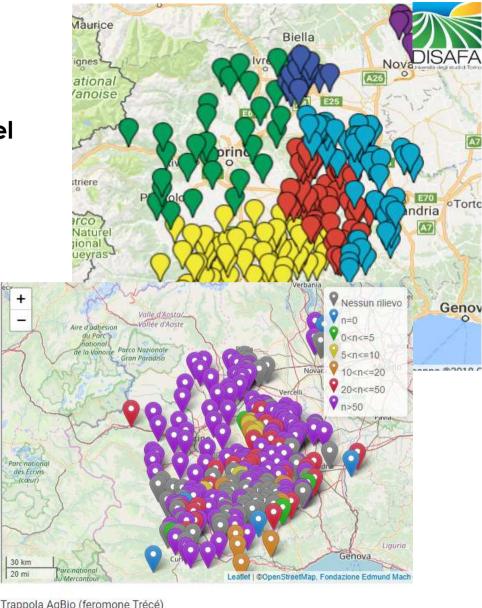






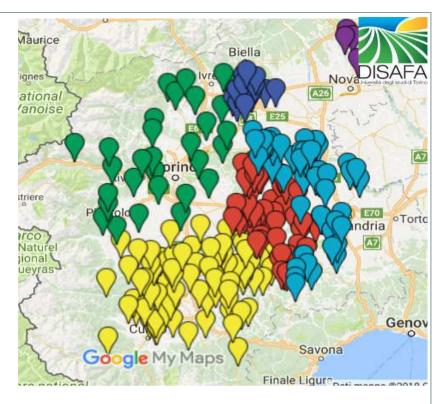
- > monitoraggio
 - trappole (230 nel 2018, 115 nel 2019, maggio-ottobre)
 - frappage (30 siti)
 - rilievo del danno

- > monitoraggio
 - trappole (230 nel 2018, 115 nel 2019, maggio-ottobre)
 - frappage (30 siti)
 - rilievo del danno
- > app per inserimento dei dati



- > monitoraggio
 - trappole (230 nel 2018, 115 nel 2019, maggio-ottobre)
 - frappage (30 siti)
 - rilievo del danno
- > app per inserimento dei dati
- mappa con catture settimanali visibile sul sito

Cimice asiatica (Halyomorpha halys) - Monitoraggio in Piemonte


Mappa interattiva - Punti di cattura

Trappola AgBio (feromone Trécé)

L'attuale mappa si riferisce ai rilevamenti delle trappole negli ultimi 7 giorni.

- > monitoraggio
 - trappole (230 nel 2018, 115 nel 2019, maggio-ottobre)
 - frappage (30 siti)
 - rilievo del danno
- > app per inserimento dei dati
- mappa con catture settimanali visibile sul sito
- > coordinamento corilicolo settimanale
- > avvisi agli agricoltori

Coordinamento Corilicolo Piemontese

AGGIORNAMENTO TECNICO Cimice asiatica: aggiornamento Deterioramento delle infiorescenze di nocciòlo Segnalazione attacchi di Lacnea dai sei punti

Coordinamento Corilicolo Piemontese

AGGIORNAMENTO TECNICO

Fase fenologica

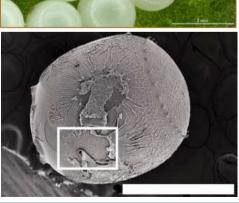
Cimici del nocciòlo: aggiornamenti

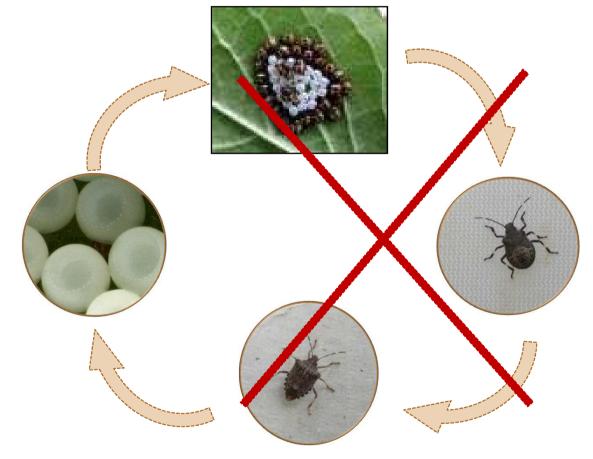
Raccolta campioni: come procedere

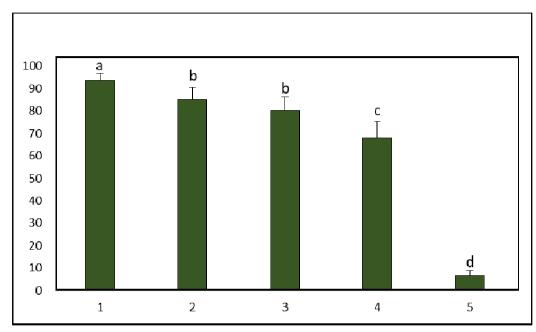
DISAFA

Osservatorio cimice asiatica principali obiettivi:

- ✓ limitare i danni causati dall'insetto nella stagione 2018 (breve periodo)
 - ⇒ monitoraggio in tempo reale della diffusione, emissione di bollettini alle organizzazioni tecniche e di produttori per l'esecuzione dei trattamenti volti a ottimizzarne efficacia ed efficienza
- √ individuare e mettere in atto soluzione efficaci e durature (<u>lungo periodo</u>)
 - ⇒ risposta ai feromoni, utilizzo di antagonisti naturali e/o sostanze battericide


Simbionti e battericidi





Simbionti e battericidi

- 1. acido citrico, Cu, Zn
- 2. mix sperimentale Cu e Zn
- 3. acido citrico, Mn, Zn
- 4. idrossido di Cu
- 5. testimone non trattato
- nessuna interferenza con parassitoidi
- → prove in campo nel 2019

Gonella et al. (2019) Entomologia Generalis (in stampa)



2016-2018 Rilievo dei parassitoidi oofagi in campo

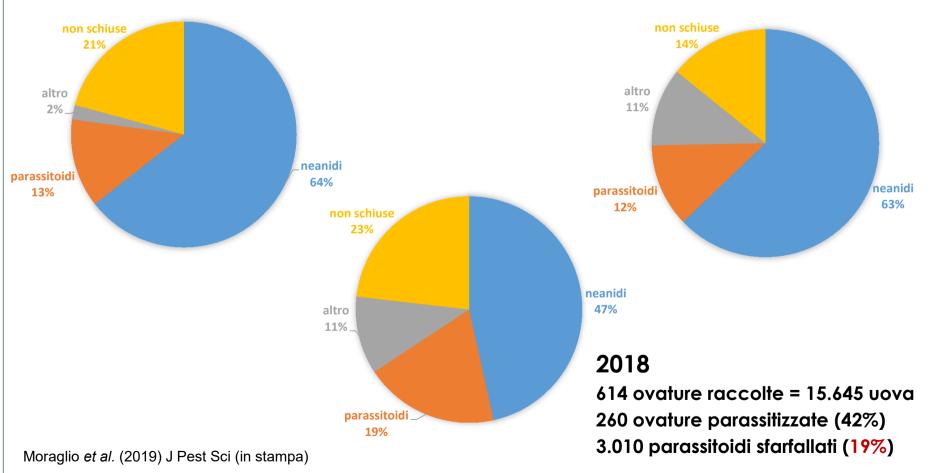
- √ raccolte in 10-12 siti e
 messe in allevamento
 - 668 ovature = 17.545 uova (2016)
 - > 439 ovature = 11.370 uova (2017)
 - > 614 ovature = 15.645 uova (2018)

tot 1.721 ovature = 44.560 uova

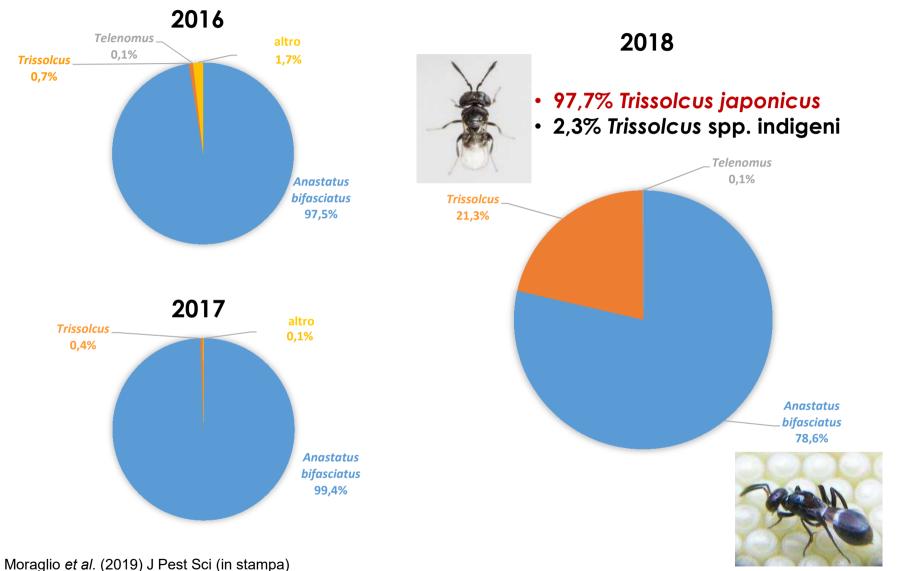
Moraglio et al. (2019) J Pest Sci (in stampa)

668 ovature raccolte = 17.545 uova

210 ovature parassitizzate (31%)


2.225 parassitoidi sfarfallati (13%)

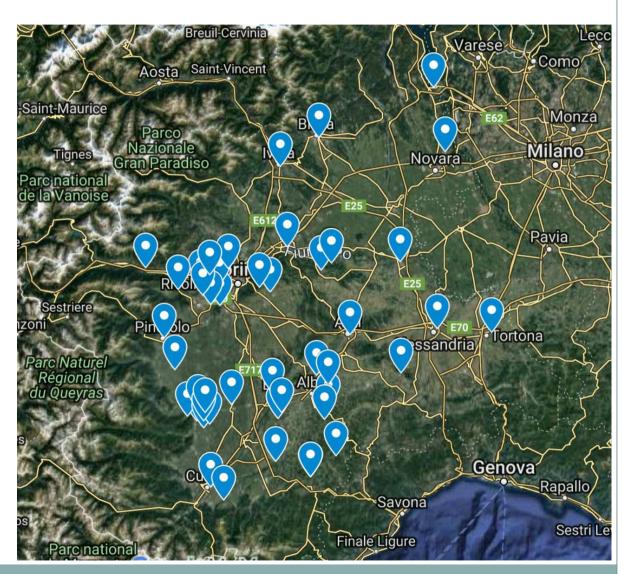
439 ovature raccolte = 11.370 uova


111 ovature parassitizzate (25%)

1.345 parassitoidi sfarfallati (12%)

FUTURPERA, Ferrara, 30 novembre 2019

2019


Rilievo dei parassitoidi oofagi in campo^(*)

- ✓ periodico in 28 siti
- ✓ occasionale in 17 siti

raccolte e messe in allevamento

- ➤ 1.819 ovature (→ più del totale del triennio precedente)
- conteggio delle uova e analisi dei parassitoidi in corso

(*) indagine condotta in collaborazione in tutte le regioni settentrionali

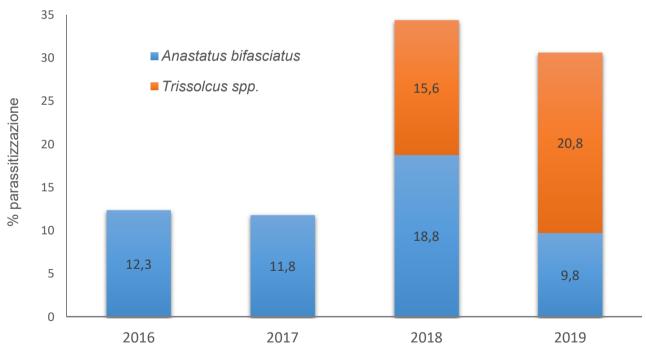


2019

Rilievo dei parassitoidi oofagi in campo

rinvenimento di parassitoidi esotici

- Trissolcus japonicus
- Trissolcus mitsukurii
- entrambi


Sito ove è stato rinvenuto Trissolcus japonicus

2016 \rightarrow 54 ovature = 1.339 uova, 165 parassitoidi sfarfallati (12%)

2017 \rightarrow 53 ovature = 1.418 uova, 167 parassitoidi sfarfallati (12%)

2018 \rightarrow 217 ovature = 5.543 uova, 1.839 parassitoidi sfarfallati (33%)

2019 \rightarrow 251 ovature = 6.496 uova, 1.987 parassitoidi sfarfallati (31%)

Moraglio et al. (2019) J Pest Sci (in stampa)

Rilasciati in campo 3 parassitoidi oofagi indigeni:

2018: Ooencyrtus telenomicida (Hymenoptera: Encyrtidae)

[CREA e Agrion]


2018: *Trissolcus kozlovi* (Hymenoptera: Scelionidae)

2019: Anastatus bifasciatus (Hymenoptera: Eupelmidae)

→ Anastatus bifasciatus è risultato l'unico parassitoide indigeno in grado di parassitizzare H. halys in condizioni naturali

→ tuttavia, alla luce dei nuovi rinvenimenti, sono ora in corso indagini per valutare con attenzione l'impatto dei due parassitoidi esotici, Trissolcus japonicus e T. mitzukurii

Servick (2018) Science 361: 542-545

Importing an exotic species for pest control takes years of preparation. What happens when it arrives on its own?

By Kelly Servick, in Bridgeton, New Jersey

Parassitoidi oofagi esotici: risk assessment

Efficienza e gamma di ospiti di Trissolcus japonicus in Europa

Prove con *T. japonicus*saggiate 13 specie non bersaglio
mediante esposizione di ovature in

- prove no-choice in arena in laboratorio (L)
 - > sfarfallamento > 70% in 10 specie
- prove doppia scelta in gabbione in laboratorio (S)
 - > P. prasina attrattiva come H. halys
- prove multiscelta in campo (C)
 - > in corso di analisi

Pentatomidae		
Arma custos	L √ S C	
Acrosternum heegeri	L S C	
Carpocoris fuscispinus	L C	
Dolycoris baccarum	L C	
Graphosoma italicum	L S C	
Nezara viridula	L C	
Palomena prasina	L √ S √ C	
• Pentatoma rufipes	L √	
• Peribalus strictus	L C	
• Piezodorus lituratus	L C	
Rhaphigaster nebulosa	L √	
Scutelleridae		
• Eurygaster maura	L C	
Coreidae		
Gonocerus acuteangulatus	L	

Haye et al. (2019) J Pest Sci (in stampa)

In conclusione

soltanto un approccio realmente integrato può portare a un efficace contenimento della cimice asiatica!

